DEVELOPMENT OF A MANDATORY CODE FOR SHIPS OPERATING IN POLAR WATERS

Developing a strong Polar Code

Submitted by the Friends of the Earth International (FOEI), Clean Shipping Coalition (CSC), World Wide Fund for Nature (WWF) and Pacific Environment

SUMMARY

Executive summary: In the annex to this document, FOEI, CSC, WWF, and Pacific Environment provide contextual information on Arctic shipping, including trends, and consider issues related to ice strengthening and heavy fuel oil use. We ask the Sub-Committee to take this information into account when considering provisions for the Polar Code.

Strategic direction: 5.2

High-level action: 5.2.1

Planned output: 5.2.1.19

Action to be taken: Paragraph 3

Related documents: DE 53/18/3; DE 54/13/8, DE 54/INF.5; DE 55/12/5 and DE 55/12/18

Introduction

1 The Sub-Committee has been tasked by the MSC with coordinating development of a mandatory Polar Code. The Code will include safety and environmental provisions. The annexed report1 puts forth a proposal regarding what some of those provisions should include. The report calls for stringent ice-strengthening requirements for vessels operating in polar waters. It also evaluates use of heavy fuel oil by vessels in the Arctic and urges a ban on that use. The prohibition is designed to reduce risk of harm to the Arctic marine environment and would have the ancillary benefit of decreasing impacts to regional air quality and climate.

1 The report annexed to this document was prepared by Friends of the Earth US, with contributions from World Wildlife Fund US and the Clean Air Task Force.
2 The report suggests that it is in the best interests of the maritime industry and IMO Member States concerned with Arctic shipping to support the enactment of a Polar Code with strong safety and environmental provisions. A robust Code that included a heavy fuel oil use ban in the Arctic would serve to harmonize polar shipping rules; aid investment decision-making pertaining to Arctic shipping by providing regulatory certainty; ensure environmental protection and foster sustainable development in the region; and obviate the establishment of an extremely burdensome regulatory scheme, likely to occur in the event of a major oil spill under a weak regime.

Action requested of the Sub-Committee

3 The Sub-Committee is invited to note the information provided and take action as deemed appropriate.
ANNEX

REPORT ON THE CASE FOR A STRONG POLAR CODE

I Introduction

The International Maritime Organization (IMO) – a United Nations specialized body charged with crafting global standards for international shipping – has undertaken the development of a suite of mandatory environmental and safety rules, or "Polar Code," for Arctic and Antarctic shipping. This report asserts that the shipping industry and IMO member nations with an interest in Arctic shipping should support the enactment of a Polar Code with strong safety and environmental provisions. Namely, the Code should, inter alia, 1) contain stringent ice-strengthening requirements for vessels plying polar waters; and 2) prohibit the use of heavy fuel oil (HFO) by vessels operating in Arctic waters. A robust Code would serve to harmonize polar shipping rules; aid investment decision-making pertaining to Arctic shipping by providing regulatory certainty; ensure environmental protection and foster sustainable development in the region; and obviate the establishment of an extremely burdensome regulatory scheme, likely to occur in the event of a major oil spill under a weak regime.

II Polar Code background and environmental regulatory gaps for Arctic shipping

1 The development of specialized rules for polar shipping began in the early 1990s. However, it was not until 2002 that the IMO approved voluntary guidance for Arctic shipping. By 2010, at the urging of Antarctic Treaty members, the IMO finally included the Southern Ocean in the voluntary scheme. Nevertheless, even before the polar shipping guidelines were finalized, IMO Member States were pressing for a mandatory set of rules for the Polar Regions, and in 2009 the Organization's Maritime Safety Committee tasked the Design and Equipment Sub-Committee with coordinating development of a mandatory Polar Code.

2 Despite similar ecological features and vulnerabilities, Antarctic waters currently enjoy a plethora of environmental protections not granted to the Arctic Ocean and its peripheral seas. For example, the IMO designated the waters south of 60 degrees south latitude as an Antarctic Special Area under MARPOL 73/78 for Annex I (oil), Annex II

2 A ban on use and carriage of heavy fuel oil already applies to Antarctic waters. See infra note 14.
3 In this report, use of the term "oil spill" not only refers to spills from oil cargo but also from fuel oil, such as heavy fuel oil, stored in bunker tanks aboard vessels.
5 Guidelines for Ships Operating in Arctic Ice-Covered Waters, MSC/Circ.1065/MEPC/Circ.399 (23 December 2002).
7 See MEPC.59/20/1 and MSC.86/23/9 by Denmark, Norway, and the United States.
8 See MSC.86/26, Report of the Maritime Safety Committee on its Eighty-Sixth Session, by the Secretariat.
9 Special Areas are certain waters that, for technical reasons relating to their oceano graphical and ecological condition and to their sea traffic, the adoption of special mandatory methods for the prevention of sea pollution is required. Available at http://www.imo.org/OurWork/Environment/PollutionPrevention/SpecialAreasUnderMARPOL/Pages/Default.aspx.
(noxious liquids)12 and Annex V (garbage).13 In addition, a recent amendment to MARPOL Annex I now prohibits the carriage and use of heavy fuel oils in Antarctic waters.14 Moreover, the Antarctic Treaty System environmental standards (e.g. Protocol on Environmental Protection to the Antarctic Treaty) for vessel wastewater and garbage (including food waste) discharge exceed those for the Arctic region.15 The Polar Code, thus, presents an excellent opportunity to establish comparable environmental rules with respect to shipping in the Antarctic and Arctic Oceans.

III Loss of Arctic sea ice

The effects of climate change are nowhere more apparent than in the Arctic. Temperatures in the region have risen at almost twice the rate of the rest of the world,16 and may climb another four to seven degrees Celsius during this century.17 Warming is responsible for the alarming loss of about 37,500 km2 of sea ice every year — an area the size of West Virginia in the United States.18 Further, the lowest Arctic summer sea ice measurements since 1979 (the advent of satellite recordings), and likely much beyond that, have occurred between 2007 and 2011.19 And sea ice cover in 2011 nearly eclipsed the record low experienced in 2007 (4.16 million km2),20 and was more than 2.5 million km2 below the 1979 to 2000 average. Arctic sea-ice thickness and multi-year ice extent21 also are declining.22

\begin{enumerate}
\item MARPOL Annex II, regulation 13(8), entered into force on 2 Oct. 1983.
\item MARPOL Annex I, regulation 43.
\item Arctic Climate Impact Assessment, Impacts of a Warming Arctic, 10, 12 (2004), available at http://amap.no/acia/.
\item From 1979-2006, there was an average decline of 23,328 square miles in the extent of summer sea ice cover each year. See 73 Fed. Reg. 28,212, 28,220 (15 May 2008).
\item Multi-year ice is ice that has survived at least two summers’ melt. Definition available at http://www.tc.gc.ca/eng/marinesafety/debs-arctic-resources-references-ice-terms-2015.htm.
\end{enumerate}
IV Arctic shipping lanes are opening up and increasing risk of accidents and spills

1 The disappearance of large amounts of sea ice in summer has opened up shipping lanes in the Arctic. The legendary Northern Sea Route along the Russian Arctic and the Northwest Passage through the Canadian Arctic were both open for the first time in 2008, and have been seasonally clear, on occasion, since then. Sailing distances between Europe and Asia can be considerably less when using an Arctic route as opposed to traditional routes. A voyage along the Northern Sea Route (NSR) between Yokohama, Japan and Rotterdam, Netherlands is 40 per cent shorter than transiting through Suez Canal. And, likewise, a voyage from Seattle, Washington to Europe through the Northwest Passage would be 25 per cent shorter than one using the Panama Canal.

2 Many predictions, based on modelled data, have been offered as to when the Arctic will be essentially ice free in the summer months. Only a few years ago, models projected that summer Arctic sea ice would not disappear until the latter part or end of this century. Those projections have been altered substantially, with many scientists now positing that the Arctic Ocean will be virtually ice free during the summer in 30 to 40 years. Scientists James Overland, US National Oceanic and Atmospheric Administration, and Walt Meier, National Snow and Ice Data Center, believe that an essentially ice-free Arctic will occur between 2030 and 2040, and some scientists theorize that an open Arctic will occur even earlier. According to Overland, "[T]he melting is happening faster in the real world than it has in the models[.]

23 Russia defines the Northern Sea Route as spanning the northern point of Novaya Zemlya and its straits in the west to the Bering Strait in the east. Since it is not one single sailing channel, its length varies from 2,200 to 2,900 miles. D. Brubaker, Regulation of navigation and vessel-source pollution in the Northern Sea Route: Article 234 and state practice, 221, in Protecting the Polar Marine Environment: Law and Policy for Pollution Prevention, D. Vidas (ed.), University of Cambridge Press, Cambridge, UK (2000). The Northeast Passage encompasses the Northern Sea Route and extends through the Barents Sea and Norwegian Sea to connect the Pacific and Atlantic Oceans.

24 The Northwest Passage comprises five recognized routes, with variations, between the Atlantic and Pacific oceans through the Canadian Arctic Archipelago. AMSA, supra note 22, at 20.

26 US Coast Guard, "Distance" and "Depth and Width" worksheet, from Bering Strait Access Workshop, Institute of the North, 15 Aug. 2011, available at http://www.institutenorth.org/calendar/events/bering-strait-access-workshop/.

28 Kingdom Strategy, supra note 27, at 19.

29 AMSA, supra note 22, at 25.

30 The Arctic Council's Arctic Monitoring and Assessment Program released a report in May finding that Arctic sea ice cover is shrinking faster than projected by the UN expert panel on climate change. The report hypothesizes that the Arctic Ocean will be virtually free of ice in summer within 30 to 40 years. Kramer, supra note 27; see J.C. Stroeve et al., Arctic sea ice decline: Faster than forecast, 34 Geo. Res. Lets. L09501 (2007); AMSA, supra note 22, at 25.

33 B. Walsh, Farewell to the Arctic—as We Know It, TIME, 27 Sept. 2011, available at http://www.time.com/time/health/article/0,8599,2095114,00.html.
3 The trajectory of an increasingly ice-free Arctic is clear. In light of this profound historical development, shipping lines and cargo owners seeking to capitalize on perceived economic opportunities are preparing to ramp up operations in the region. Presently, about 3,000 vessels operate in the Arctic, making some 15,000 voyages annually. The number of vessels navigating within the region is expected to rise by 2020 and beyond.

V Drivers of shipping growth

The diminishing state of summer sea ice and the presence of substantial amounts of natural resources are key drivers in the expected growth of Arctic shipping. While uncertainties exist about the precise level of shipping projected to occur, it will likely be significant. Already, the shipping industry is gearing up for expanded activities in the region by purchasing ice-strengthened vessels, investing in infrastructure, and engaging in demonstration voyages. In the near- to mid-term, shipping related to oil and gas exploration and recovery is anticipated to be the fastest growing type of Arctic shipping. One study concludes that new oil and gas production will be in Arctic areas that require more ship transport than pipeline conveyance, increasing oil and gas vessel activity. Greater cruise ship activity in the Arctic will likely occur as well. In the near-term, while the volume of traffic through the NSR is not expected to exceed 500,000 tons per year, growth in the mid- to long-term is envisioned to be substantial.

A. Shipping associated with natural resource exploration, recovery and transport

1 Oil and gas development

1.1 The US Geological Survey estimates that about 30 per cent of the world's undiscovered gas and 13 per cent of the world's undiscovered oil are located in the Arctic. This translates into about 90 billion barrels of oil, nearly 1,700 trillion cubic feet (47 trillion cubic metres) of natural gas, and 44 billion barrels of natural gas liquids. Importantly,
most of the seabed oil and gas resources of the region are located within the Exclusive Economic Zones (EEZs) of the Arctic coastal States – Russian Federation, Canada, Greenland (Denmark), Norway, and the United States – meaning that clearly defined sovereign authority exists over seabed resources within those bounds, and also that coastal and port State control over shipping in EEZs, as opposed to the high seas (waters beyond EEZ boundaries), are greater.

1.2 Oil and natural gas deposits in the western Arctic are considered substantial. The Chukchi and Beaufort Sea deposits may hold 25 billion barrels of oil, with a value of $2.4 trillion based average oil prices (NY Mercantile Exchange) in 2011. Exploration drilling on the Alaska outer continental shelf is proposed for 2012 and could result in actual production activities by around 2020. In 2012 and 2013, Shell intends to drill as many as three exploration wells in the Chukchi Sea using the Noble Discoverer drillship and up to two exploration wells in the Beaufort Sea deploying the Kulluk drillship. For these drilling operations, Shell expects to use additional vessels for fleet fuel supply, tug support, waste and cuttings capture, standby oil spill response, shuttling to the dock, and supply duties. In addition, ConocoPhillips and Statoil also plan to conduct exploratory drilling in the Chukchi Sea in the next few years.

1.3 Experts estimate that 31 billion barrels of oil and gas reside off Greenland's northeast coast, with 12 billion barrels located off of the country's west coast. By January 2011 there were 20 active licences for exploration and recovery of oil and gas in Greenlandic waters, and more licences are expected as a new licensing round for northeast Greenland is set for 2012-2013.

\[\text{References}\]

42 US Geological Survey Fact Sheet, supra note 40.
43 AMSA, supra note 22, at 98.
50 Kingdom Strategy, supra note 27, at 26.

1.5 Norway's Snohvit Arctic gas field in the Barents Sea, which began production in 2007, yields 4.2 million tons of natural gas annually for export to the United States and Europe.\footnote{See Press Release, "K" Line Europe, Delivery of 140,000 cbm type LNG carrier "Arctic Discoverer" (15 Feb. 2006), available at \url{http://www.kline.co.jp/news/2006/060215_e.htm}.} Statoil, a Norwegian energy company, uses large LNG tankers to transport the hydrocarbons and expects to deploy four of these carriers for at least the next 20 years, exporting about 70 shiploads per year.\footnote{See Press Release, "K" Line Shipping UK, Snohvit Project, available at \url{http://www.klinelnguk.com/klinelng/activities/index.asp?pr=1}.} One tanker, the 118,000 gross ton (gt)\footnote{Gross tonnage is a unitless index related to a vessel's overall internal volume.} ice-strengthened \textit{Arctic Discoverer}, made its first trans-Atlantic delivery from Norway's Arctic to Maryland's Cove Point Gas Import Terminal in February 2008.\footnote{See Press Release, Statoil, First Cargo of Norwegian Gas to USA (22 Feb. 2008), available at \url{http://www.statoil.com/en/NewsAndMedia/News/2008/Pages/FirstNGUSA.aspx}.}

Mobil recently entered into an agreement with Rosneft, the Russian state oil company, to drill in the Kara Sea. This area contains the Rusanovskoye and Leningradskoye gas fields, believed to each hold 3 trillion cubic metres, and gas deposits in Taz Bay and the Gulf of Ob. The Prirazlomnoye oil field in the eastern part of the Pechora Sea is scheduled to begin production in 2012. The field has oil reserves of 610 million barrels and is expected to produce for 22 years. Two ice-classed tankers, the Kirill Lavrov and Mikhail Ulyanov, will transfer oil from Prirazlomnoye to a floating platform. The crude oil will then be transported by four 150,000 to 170,000 deadweight ton (dwt) supertankers.

1.7 In light of these vast deposits, Russia and Norway are preparing extensively for expanded shipping in their waters related to oil and gas transport. The Russian state-owned shipping entity Sovcomflot is constructing ice-classed tankers for oil and LNG transport with a total capacity of approximately one million deadweight tons. Offshore development and port expansion plans are also taking place or being considered for many areas of the Russian Arctic, including Murmansk, near Arkhangelsk, Chôshkaya Bay, and Ob Bay.

1.8 Natural resource transport along the Northern Sea Route is increasing annually. In 2010, the oil tankers Indiga and Varzuga, each holding 15,000 metric tons of cargo, voyaged from Murmansk to Chukotka. That summer, the Russian tanker Baltika, carrying 70,000 metric tons of gas condensate, travelled from Murmansk to China. The Baltika is reported to be the first high-tonnage tanker to attempt the Northeast Passage.

1.9 Vessel activity involving natural resources was incrementally greater in 2011. Due to advantageous sea ice conditions in the Kara and Barents seas, the tanker Perserverance set sail on 29 June 2011 from Murmansk, Russia, aided by two icebreakers and completed its passage on 14 July. The company plans to send six to seven more ships through the Northern Sea Route in 2011. In August 2011, the tanker Vladimir Tikhonov –

63 Kramer, supra note 27.
64 Solozobov, supra note 57.
65 Gazprom, a Russian energy company, estimates the resources of the Kara, Pechora and Barents Seas at approximately 70 billion tons of fuel oil equivalent. See supra note 58. The Yamal Peninsula–Ob Bay area will require significant shipping activity with respect to infrastructure development and product transport, according to Russian officials. M. Årild and J. Øystein, Opening of New Arctic Shipping Routes, prepared for European Parliament’s Committee on Foreign Affairs, (2010), available at http://tepsa.be/Arild%20%OEystein%20JENSEN.pdf.
68 Deadweight tonnage is a measure of how much weight a vessel is carrying or can safely carry.
69 Prirazlomnoye Oilfield, supra note 67.
70 Ivanov and Longvinovich, supra note 61.
71 Id.
75 N. Bruckner-Menchelli, Near record Arctic ice melt opens shipping lanes, Vancouver News Desk, SUSTAINABLESHIPPING.COM, Aug. 4, 2011.
carrying 120,000 metric tons of natural gas condensate – and the tanker STI Heritage navigated the route. Two Neste oil tankers, the Stena Poseidon and the MT Palva, also made the journey. In all, 18 ships have reportedly traversed the Russian Arctic sea route in 2011, with nine tankers carrying about 550,000 metric tons of gas condensate.

1.10 Oil transport via the NSR is anticipated to increase significantly. In 2008, more than 10 million metric tons (MMT) of oil were transported through Russia's western Arctic. Further, shipped oil from Russia that passed along the Norwegian coast increased from around 4 MMT in 2002 to 16.5 MMT in 2009. By 2020, 40 to 45 MMT of oil are expected to be shipped along the NSR, comprising about 70 per cent of all NSR traffic. (See Figure 1 below, Map of Northern Sea Route).

![Figure 1: Northern Sea Route](image)

2 Other natural resource development

2.1 At 5.5 trillion tons, Alaska's vast coal resources represent roughly half of the total known United States coal reserves. At least eight proposed mines are in the permitting process. Near Anchorage, the Usibelli's Wishbone Hill Coal Mine plans to produce 500,000 tons annually for 12 years, with shipments to Asian markets beginning as early as 2012 from Port MacKenzie. Farther north, vessel traffic related to coal and hard

76 G. Bryanski, Russia's Putin says Arctic trade route to rival Suez, REUTERS CANADA, Sept. 22, 2011, available at http://ca.reuters.com/article/topNews/idCATRE78L5TC20110922?pageNumber=1&virtualBrandChannel=0
77 N. Bruckner-Menchelli, Tankers successfully traverse the Arctic's Northeast Passage, Vancouver News Desk, SUSTAINABLESHIPPING.COM, Sept. 30, 2011.
78 Kramer, supra note 27.
79 Treadwell testimony, supra note 74, at 2.
81 Ivanov and Longvinovich, supra note 61; see also AMSA, supra note 22, at 5.
83 For current permits, see the Alaska Division of Mining, Land and Water Management website, available at http://dnr.alaska.gov/mlw/mining/coal/.
minerals similarly is expected to increase annually, particularly during the summer shipping season, as more mines begin production and existing mines ramp up production by expanding known reserves. Large mines in Alaska currently include Red Dog, located in Northwest Alaska, and Rock Creek on the Seward Peninsula. The Arctic Slope Regional Corporation, in collaboration with BHP Billiton, recently conducted three years of exploration activities to determine the coal potential between Point Lay and Point Hope just inland of the Chukchi Sea coast. The regional corporation reports that the coal is "world class" and is currently seeking a development company for coal production in the western Arctic.85

2.2 The potential for energy resource extraction in the Russian Arctic, apart from uranium, surpasses 1,200 billion tons of oil equivalent (of which 60 per cent is coal and 20 is extractable reserves of natural gas and oil). Kola province holds platinum-group metals, copper-nickel ores, rare-earth metals, iron, phosphorus, diamonds, and gold.86 And Norilsk Nikel intends to begin exporting coked coal from Taimyr after 2015.87 The timber industry also plans to resume shipping operations from several Russian Arctic ports, at up to 1.1 MMT per year. Approximately 15 to 20 new wood-carrying ships will be needed for this expansion.88

2.3 Greenland's mineral deposits also are exceptional. They include zinc, nickel, copper, diamonds, and gold. The country also possesses rare earth elements, which are integral to the technology sector. Potential world class and multi-commodity ore deposits exist all over coastal Greenland, including the Kvanefjeld Project near the country's southwestern tip. Exploration and recovery of these resources "will require Arctic marine transport systems to carry these scarce commodities to global markets."89

2.4 In Canada, the Mary River iron ore deposits on Baffin Island, Nunavut are particularly prized, containing iron ore with 67 per cent iron.90 Plans are being considered to develop a mining operation on Baffin and ship about 18 million tons of ore a year to Europe, for a minimum of 25 years. A fleet of ice-strengthened bulk carriers operating on a year-round basis would be needed for the project.91

2.5 Norway for years has exploited mineral resources in the Svalbard Islands and other parts of the country. In September 2010, the ice class bulk carrier, Nordic Barents, sailed with 41,000 tons of iron ore concentrate from northern Norway to China through the Northeast Passage.92,93

2.6 A Norwegian shipping company, Tschudi, is reviving an idled iron ore mine in the country's north in order to ship ore to China through the Northeast Passage. A voyage in 2010 to Lianyungang, China took 21 days, as opposed to the 37 days normally required to sail to China through the Suez Canal. Tschudi executives assert that they save $300,000 per trip.94

87 Ivanov and Longvinovich, supra note 61.
88 Id.
89 AMSA, supra note 22, at 98.
90 Id.
91 Id.
92 Kingdom Strategy, supra note 27, at 19.
93 According to DNV, 49 of 49 bulk carriers over 10,000 gt operate on heavy fuel oil while transiting the Arctic. See DNV Heavy Fuel Report, supra note 37, at 30.
94 Kramer, supra note 27.
B. Marine tourism – Cruise ships

1 Cruise ship activity in Arctic waters is rapidly expanding. In 2004, about 250 passenger ships operated within the region, with cruise ships carrying more than 1.2 million passengers – by 2007, the number of cruise ship passengers had more than doubled. Additional growth in cruise activity in the region is anticipated. As Dr. John Snyder of Strategic Studies, Inc., in the United States notes, developing Arctic tourism is an objective of the Russian Federation, Greenland, Nunavut, Yukon, Manitoba, Sami, and Native Alaskan economies. Cruise ships, as elaborated below, also are visiting higher latitudes of the Arctic. The Arctic Council's authoritative Arctic Marine Shipping Assessment 2009 Report (AMSA) remarks that "[t]his combination of hostile environmental conditions and scarce emergency infrastructure is a serious threat to human life."98

2 Cruise ship activities also pose a distinct threat to the marine environment. The AMSA states that "[c]ruise ships often intentionally travel close to the ice edge and shorelines for wildlife viewing opportunities, increasing the risk of interaction with ice and other hazards."99 Furthermore, larger passenger ships (those 5,000 gross tons and greater) navigating in the Arctic tend to use heavy fuel oil (HFO) – 27 out of 28, according to a DNV study.101 In addition, the number of large passenger ships using HFO is likely understated as the study only viewed Arctic vessel activity for part of the year, from August to November, and its geographic scope was not as expansive as the Arctic Council’s AMSA, which identified over 250 passenger ships (including cruise ships) in the Arctic in 2004.102

3 The AMSA also points out other concerns posed by the cruise sector:

"From 2000 to the end of 2008, 88 new cruise ships were introduced. The vast majority of these vessels were not constructed or designed to operate in Arctic conditions, yet as Arctic cruise tourism continues grow, it is very likely that many of them may make trips to the region …"103 The cruise ship industry has indicated that it not only intends to maintain an Arctic presence, but to expand in terms of ship passenger capacity, destinations and extended seasons of operations. This will be encouraged by circumpolar nations that consider tourism important for growing and strengthening their economies.104

4 Moreover, most cruise ships with substantial ice capabilities are approaching the end of their expected service lives, leaving behind a fleet of less ice-equipped passenger vessels, which further buttresses the need for appropriate Arctic operational standards.105

95 AMSA, supra note 22, at 71, 79.
96 Id. at 81; see infra note 104.
98 AMSA, supra note 22, at 80.
99 AMSA, supra note 22, at 79.
100 Consistent with DNV Heavy Fuel Report, see supra note 37, the term heavy fuel oil in this study denotes residual marine fuel or mixtures containing predominately residual fuel and some distillate fuel, such as intermediate fuel oil.
101 Id. at 30.
102 AMSA, supra note 22, at 71.
This confluence of circumstances, as well as a recent cruise ship grounding in the Canadian Arctic,\(^{106}\) puts into stark relief the need to have cruise ships adequately ice-strengthened for Arctic duty. As well, it underscores that cruise ships should not be using HFO while in the region.

6 Greenland

Fourteen cruise ships visited Greenland a total of 164 times in 2003. In 2010, 43 cruise ships berthed in Greenland ports, compared to 32 the year before,\(^ {107}\) revealing over 200 per cent growth in this sector in only eight years.\(^ {108}\) Moreover, these cruise ships also are venturing into new territory. In 2008, 28 vessels planned to travel to Uummannaq, Greenland, with some continuing northward to Qaanaaq – both locations are far north of the Arctic Circle.\(^ {109}\)

7 Canada

Within Arctic Canada,\(^ {110}\) planned cruise itineraries doubled between 2005 and 2006 to 22 and have increased at a rate of 9.5 per cent on average over the subsequent four years.\(^ {111}\) While traffic has dissipated somewhat of late due to the recent global financial downturn and scuttling of the Inuit-operated Lyubov Orlova,\(^ {112}\) cruise ship activity in the Arctic waters of Canada is expected to grow in the future.\(^ {113}\) Interestingly, a marked shift has occurred in cruise ship travel within the Canadian Arctic. Community and shore landings by cruise ships to the High Arctic and Northwest Passage have increased 63 per cent and 57 per cent, respectively, from 2006 to 2010, whereas voyages to lower Arctic latitude destinations including Baffin Bay, Hudson Bay, and Newfoundland have tapered off.\(^ {114}\) Voyages to the upper reaches of the Arctic potentially present a greater risk of harm to ships because of the presence of higher concentrations of older, harder sea ice and deteriorating ice shelf conditions.\(^ {115}\)

8 United States and Russia

Cruise ship activity in the Arctic areas of both countries is fairly limited. In Russia, there are voyages to Franz Josef Land and Novaya Zemlya.\(^ {116}\) And there have been cruise ships sailing through the Northern Sea Route, from Murmansk to Anadyr.\(^ {117}\) In the United States,

\(^{106}\) In August 2010, the expedition cruise ship Clipper Adventurer stranded itself on an escarpment in Coronation Gulf. See *infra* note 191.

\(^{108}\) AMSA, *supra* note 22, at 79.

\(^{109}\) *Id.* at 81.

\(^{110}\) About 225,000 tourists visit Arctic Canada each year. J. Dawson et al., *Climate change, marine tourism, and sustainability in the Canadian Arctic: Contributions from systems and complexity approaches*, 4 Tourism in Marine Environments 69 (2007).

\(^{111}\) J. Dawson et al., Cruise Tourism in Arctic Canada: Community Report for Gjoa Haven, Social Sciences and Humanities – Research Council of Canada, 2011.

\(^{113}\) *Id.*

\(^{114}\) *Id.*

\(^{115}\) See *infra* notes 137-38 on ice shelves.

relatively small numbers of cruise ships transit in Arctic Alaska waters or undertake shore/community visits in the region.118

9 Norway

Cruise ships routinely travel to Northern Norway119 and the Svalbard Islands, located high above the Arctic Circle. The number of visitors on oversea cruises to Svalbard has surged from about 30,000 in 2001 to nearly 50,000 in 2007.120 The number of tourists participating in expedition cruises around Svalbard has risen from about 5,000 in 2001 to over 10,000 in 2007.121 All expedition cruise ships to Svalbard operate exclusively on distillate fuel, a practice which should be adopted by all other cruise ships travelling to the region.122

VI Trans-Arctic shipping

1 Nascent trans-Arctic shipping activities also are commencing. In August 2008, the Danish cable ship, Peter Faber, sailed through the Northwest Passage.123 In September of the following year, two German cargo ships completed a commercial voyage from South Korea to the Netherlands via the Northeast Passage.124 Icebreaker escort requests for Russian Arctic waters have increased to 15 in 2011, up from 4 in 2010, indicating a growing interest in the Northeast Passage as a permanent new shipping route.125

2 There has been debate regarding whether trans-Arctic liner routes would be economically viable in the near-, medium-, and long-term. Naturally there are several different factors at play (e.g. infrastructure, fuel prices, regulations, and fees).126 Nonetheless, several studies have found that the polar route can be profitable. One recent study determined that – with reduced ice-breaking fees, even in the near term – voyages utilizing the Northern Sea Route can compete economically with transits through the Suez Canal.127 Another study, undertaking an economic analysis of a model ship schedule between Shanghai and Hamburg, found that "the Northern Sea Route is a viable alternative

119 North Cape, Norway alone is thought to attract 200,000 visitors a year. http://www.skarsvag.no/information/sights/north-cape.
120 A. Evensen and G. Christensen, Environmental impacts of expedition cruise traffic around Svalbard, prepared for Association of Arctic Expedition Cruise Operators, Akvaplan-niva AS Report: 4823-1, 2011, available at http://www.aeco.no/documents/Finalreport.pdf. To clarify, overseas cruise passengers to Svalbard generally embark from mainland Europe on larger cruise ships, carrying up to 2,500 passengers, while expedition cruise ship passengers generally fly into Svalbard and board smaller cruise vessels, typically 70-100 passengers, where they go on excursions to various island locations.
121 Id.
122 Id.
123 Kingdom Strategy, supra note 27, at 19.
125 Id.
126 "Whether or not the route [NSR] becomes commercially viable will depend a lot on whether Russia reduces this [icebreaker] fee," maritime analyst Joshua Ho, from Singapore's Nanyang Technological University, informed the news provider. N. Jameson, Arctic ice melt could hit Singapore's maritime sector, London News Desk, SUSTAINABLESHIPPING.COM, 5 Aug. 2011.
to the Royal Road [Suez Canal Route] for container transport.”

A number of other reports indicate that container transport through the Northern Sea Route can be economically feasible as well.

With regard to actual shipment projections, a recent study found that part-year Arctic transits between Asia and Europe (along the Northern Sea Route) would result in the potential transport of about 1.4 million 20-foot equivalent units (TEUs) in 2030 and 2.5 million TEUs in 2050. Dr. James Corbett has projected even greater Arctic shipping activity, estimating that 2 per cent and 5 per cent of global seaborne traffic would divert through the Arctic in 2030 and 2050, respectively.

Additional factors also may make the Arctic route more enticing to shippers. Despite recent construction to enable the Suez Canal to accommodate larger ships, a threshold will inevitably be met in which the size and weight of larger ships will limit the number of ships in each convoy, thereby increasing wait times and cost. Moreover, the Arctic is not burdened by the threat of piracy that impacts waters off the Horn of Africa and the Suez Canal as well as the Straits of Malacca, which among other concerns increases insurance premiums.

VII Risks related to Arctic shipping

A. Severe environmental conditions associated with Arctic operations

The onset of increased commercial activities, including from polar shipping, poses serious risks, particularly with regards to a bunker or cargo spill. It should be underscored that, while sea ice as a whole is diminishing, its fragmentation will likely lead to increased ice

129 See S. Chernova and A. Volkov, Economic feasibility of the Northern Sea Route container shipping development, Logistics and transport, DE 303E 003, masters' thesis (2010); L.P. Lammers, The Possibilities of Container Transit Shipping via the Northern Sea Route—Using Backcasting to Gain Insight in the Paths that Lead to a Feasible Arctic Shipping Route, Delft University of Technology, "Transport Infrastructure and Logistics (TIL)," Master's Thesis (2010).

130 The equivalent of about 700,000 containers.

131 Peters et al., supra note 38.

132 The study estimates that carbon dioxide emissions CO2 emissions from Arctic container traffic in 2030 are 4.8 and 7.7 MMT for a “business as usual” and high growth scenario, respectively; for 2050, the figures would be 12 and 26 MMT. Arctic Emissions Inventory, supra note 36. Paxian et al. (2010) assert 0.73 to 1.28 MMT for fuel consumption in the Northeast Passage in 2050, similar to the 1.78 MMT estimated by Peters et al. (2011) for the same timeframe. A. Paxian et al., Present-Day and Future Global Bottom-Up Ship Emission Inventories Including Polar Routes, 44 Environ. Sci. Technol. 1333 (2010).

133 See AMSA, supra note 22, at 110.

135 See Id.
movement and variability in certain areas of the Arctic (e.g. Canadian Arctic). Especially concerning is the increased movement of older, thicker sea ice, which previously was relatively immobile, and the deterioration of glaciers and ice shelves, resulting in greater numbers of icebergs, bergy bits, and growlers and a corresponding increase in danger to vessels. Knowledge of ice behaviour and characteristics also is limited in many Arctic areas. For instance, trapped ice remains into the summer on Hannah Shoal, off the north coast of Alaska, potentially posing a risk to vessel traffic that frequent the area.

Moreover, other climatic changes expected to occur would make Arctic shipping more dangerous. For instance, an anticipated increase in fog and low-level clouds during the open-water season will elevate the occasions of poor visibility in summer and autumn, when Arctic shipping is at its apex. Diminished visibility not only is a risk factor in accidents but also impairs spill response efforts. Vessel icing is expected to occur more frequently in the Arctic fall, likewise increasing the risk of incident and hampering spill response attempts. Meanwhile, some suggest that Arctic storms could be more severe and/or more frequent during autumn and winter. These storms would increase occurrences of rough seas and high winds, placing further burdens on Arctic vessel navigation and spill recovery operations, generally.

136 AMSA, supra note 22, at 166.
139 Bergy bits and growlers are smaller pieces of icebergs that are dangerous for navigation because they are difficult to detect. AMSA, supra note 22, at 22.
142 Id.
143 Id.
144 Id.
145 Id.
B. Spill response in the Arctic is difficult to impossible

1 Lack of infrastructure

1.1 Spill response infrastructure and resources are extremely limited in the Arctic.146 US Coast Guard Rear Admiral Paul Zukunft recently noted "that the nearest Coast Guard response vessel is 1,200 miles away. Whereas thousands of workers flocked to the gulf coast to fight the spill there, there are only a handful of rooms at the tiny Olgoonik Hotel here [in Wainright, Alaska]."147 Spill response shortcomings are not unique to the American Arctic, but also are evident in most areas of the region.

1.2 Spill response in the Arctic also is compromised by severe environmental conditions. Canada's National Energy Board found that, at a minimum, oil spill response measures cannot be utilized in the Arctic's Beaufort Sea 20 per cent of the time in June, 40 per cent of the time in August, and 65 per cent of the time in October.148

2 Mechanical recovery of oil impractical in ice-covered waters

2.1 Furthermore, the availability and effectiveness of oil spill countermeasures in Arctic ice-covered waters are in doubt.149 Mechanical recovery systems, such as booming and skimmers, are negatively impacted by the presence of sea ice.150 "Ice can induce tears in booming, or can clog skimmer systems and prevent them from encountering spilled oil."151 While recent efforts have sought to improve skimmer performance in polar conditions, oil recovery rates are still underwhelming,152 prompting one study to recommend that skimmer deployment in the Beaufort Sea concentrate on small oil spills in areas with little ice.153 Another study found that "[a]vailable estimates from mechanical response in broken ice vary from 1 to 20 per cent depending on the degree of ice coverage and if responding during freeze-up or spring break-up... Recent barge trials on the Beaufort Sea demonstrated that even trace amounts of ice (less than 1/10 ice coverage) can cause significantly reduced...

146 Retired Admiral Thad W. Allen, National Incident Commander for the coordinated response to the Deepwater Horizon spill, testified before a Senate committee that the Coast Guard has "limited response resources and capabilities" in the event of a major oil spill in the Arctic Ocean. S. Hrg. 111-259, Strategic Importance of the Arctic in U.S. Policy, 111th Cong. S. Hrg. 111-259 at 18 (20 Aug. 2009).

149 "... it remains unclear when and where any one of these countermeasures, or countermeasures in combination, will be available under current and future weather, sea state, ice, and light conditions of the Arctic—or whether they will work even if available." Science Needs Study, supra note 141, at 130.

150 Id.

151 Id.

2.2 In addition, mechanical recovery systems require a platform – often consisting of ice-classed support vessels, barges, or tugs – upon which they can be deployed. 156 Arctic environmental conditions, as mentioned, can hamper or even preclude the establishment of these recovery platforms. A recent tanker spill in the icy waters off Norway's coast served to affirm the inadequacy of existing response technologies and capabilities in icy waters.157

3 In-situ burning's efficacy limited in Arctic waters

Another oil spill countermeasure, in-situ burning, is often viewed as a viable option in ice-covered Arctic waters. However, it has not been thoroughly vetted in real-world conditions and is questionable from an environmental standpoint. Sea ice abundance, particularly in the 30 to 70 percent ice coverage range,158 and sea ice type can interfere with in-situ burning's efficacy.159 Also, emulsified oil (containing sea water) and insufficient oil spill thickness inhibit burning.160 This countermeasure also produces air emissions (including black carbon and various other particles and gases) and residues. Several studies affirm that residue formation from in-situ burning is more likely in the presence of sea ice than in open water.161 Another study noted that residues from in-situ burning may contain toxic substances, and should be extracted from the marine environment where feasible.162 The US Geological Service recently summarized that "[r]obust characterization of likely ISB [in-situ burning] air plumes and toxicological testing, especially on potential effects to benthic organisms, of ISB residue are lacking."163
4 Dispersant use unproven in Arctic marine environment

4.1 Dispersants also are considered a potential oil spill countermeasure in ice-covered Arctic waters. Dispersants are designed to facilitate the mixing of spilled oil within the water column, thereby reducing the threat of shoreline contamination. However, this naturally "increase[s] the potential exposure of water-column and benthic biota to spilled oil."

Moreover, one study has shown that some dispersants are affected by temperature and salinity, and that measured efficacy can fluctuate by about a factor of ten or more. Overall, the US Geological Service has expressed reservations about its deployment in the region, stating that "substantial scientific and technical work as outlined by various expert groups still must be done before dispersants can be considered a practical response tool for the Arctic." A recent DNV study further asserts that the remote nature of the region leads to slow spill response start-ups that "more or less exclude chemical dispersion techniques due to the short time window of opportunities of chemical dispersion of spills (HFO)." The environmental organization World Wildlife Fund characterizes dispersants as of little value when oil is spilled in shallow waters or at the shoreline and believes its use as a viable response option in Arctic Alaska waters "is still many years off."

4.2 Concerns also exist about dispersants' effects on Arctic marine organisms. Contemporary scientific reviews illustrate that there is no consensus regarding dispersant impact on the biodegradation or toxicity of spilled oil. The US Geological Survey recently remarked that "understanding of the potential toxicological effects of dispersants on Arctic ecosystems is lacking." A University of West Florida study even found that extensive Corexit dispersant use in the Deepwater Horizon response could be more damaging to the environment than the oil itself. Finally, a recent report by the environmental organization Earthjustice identified 57 chemical ingredients eligible for use in dispersants at the time of the Deepwater Horizon disaster. Out of all the chemicals, five were associated with cancer, eleven were suspected or potential respiratory toxins, eight were known or suspected to be toxic to marine biota, and five were suspected to have a moderate acute toxicity to fish.

4.3 Hence, for the above reasons, it would seem prudent to take every effort to ensure that spills from vessels do not occur in Arctic seas and, if they do occur, to minimize the extent of environmental harm stemming from those incidents.

166 Science Needs Study, supra note 141, at 137.
168 WWF, supra note 155, at 5, 12.
169 Science Needs Study, supra note 141, at 139.
170 Id.
VIII Minimizing the risk of accidents and spills in the Arctic

1 Efforts to prevent the occurrence of accidental oil spillage into marine waters as well as mitigate the extent of harm in the event of a spill are essential considerations in minimizing the environmental risk of Arctic shipping. The following section discusses options related to these goals, including ice-strengthened hulls, bunker tanker protections and placement, and fuel choice. While the first two elements are critical in attempting to avoid a fuel discharge, they are not failsafe; therefore, the last element, the type of fuel bunkered, should not be undervalued, as it can be instrumental in assuring that a spill does not become an environmental catastrophe.

2 Ice-strengthened hulls are one important aspect in confronting the threat posed by sea ice to vessels in the Arctic. In 2006, the International Association of Classification Societies (IACS), through its "Unified Requirements for Polar Ships," standardized global ice classification specifications. In the Unified Requirements there are seven different polar classes, with each level offering different capabilities for polar navigation. Within the Code, new vessels operating in polar waters should be Polar Class 7 at a minimum. Stringent ice-strengthening requirements must also be considered for existing vessels, as well.

3 Much can also be accomplished, in terms of reducing the chance of a spill, through double hull protection around bunker and cargo tanks as well as size restrictions and prudent placement of those tanks aboard the vessel. In addition, the incorporation of standardized equipment aboard vessels can serve to contain pollutants in the event of an accident and prevent their escape into polar waters and to facilitate efficient and expeditious salvage.

4 Another key way to minimize the environmental impact from a spill is to ensure that vessels are burning marine distillate (e.g. marine gas oil, marine diesel oil) as opposed to heavy fuel oil (HFO). When spilled, lighter, more refined marine fuels naturally disperse and evaporate much more quickly than HFO. Tests have shown that weathering can break down marine diesel in approximately three days, whereas over 90 per cent of HFO by mass persisted even after 20 days in the water. Marine distillate fuels also generally do not emulsify, in contrast to HFOs, which after three to five days emulsify to the maximum water content (40 to 80 per cent), significantly increasing the volume of oil to be recovered. A recent DNV study concluded that "the consequences of HFO spills are likely to be more severe than spills of marine diesels" and that "significant risk reduction will be achieved if the onboard oil type is of distillate type rather than HFO." The DNV study found, as well, that over 70 per cent (167 out of 237) of the large vessels (5,000 gt and above) operating in the

176 Consistent with DNV Heavy Fuel Report, see supra note 37, the term heavy fuel oil in this study denotes residual marine fuel or mixtures containing predominately residual fuel and some distillate fuel, such as intermediate fuel oil.
177 A. Evenset and G. Christensen, Environmental impacts of expedition cruise traffic around Svalbard, prepared for Association of Arctic Expedition Cruise Operators, Akvaplan-niva AS Report: 4823-1, 4-5 (2011), available at http://www.aeco.no/documents/Finalreport.pdf ("It is believed that around 70-80% of all MDO/MGO will evaporate within 24 hours after a spill.").
179 Cold temperatures, lack of sunlight, and ice cause oil to persist longer in arctic environments than in more temperate locations.
180 DNV Heavy Fuel Report, supra note 37, at 38-39.
181 Id.
Arctic used HFO. These larger vessels can hold substantial quantities of fuel for propulsion purposes and also presumably would be travelling with full bunker tanks since fueling options in the region are limited. Again, the actual number of vessels burning HFO in the Arctic is likely higher as the DNV study period only tracked vessels between August and November 2010.

In general, all vessels can run on distillate fuel. A small minority of vessels may require some modifications in order to operate on distillate; however, these modifications tend to be insubstantial.

IX Importance of strong Polar Code requirements

A. Accidents in the Arctic

1. With the current level of shipping activity in the Arctic, shipping accidents are relatively common. From 1995 to 2004, nearly 300 accidents and incidents occurred in the region.

2. Vessel-related spills involving oil or marine fuel have significantly impacted the Aleutian Islands over the past 20 years. In 1997, an accident involving the M/V Kuroshima released approximately 40,000 gallons of heavy fuel oil into the Bering Sea. In December 2007, the M/V Selendang Ayu grounded and broke up near the coast, resulting in six fatalities and the spilling of 336,000 gallons of heavy fuel oil. According to the US Transportation Research Board of the National Academies, these events "can have serious negative impacts on the region's ecosystem, devastating endemic and migrating wildlife and plant species and the economies that depend on the region's rich resources."

3. Recently, there has been a spate of incidents in the Canadian Arctic. In August 2010, the expedition cruise ship Clipper Adventurer stranded itself on an escarpment in Coronation Gulf. The same month, the oil tanker Mokami ran aground near Pangnirtung. The following month, the fuel tanker MV Nanny ran aground on a sandbar in Simpson Strait. The vessel was carrying 2.4 million gallons of fuel at the time. Fortunately, no injuries or fuel spillage occurred in any of these episodes; however, these incidents provide an indication of what we can expect in the region in the future and provide incentives for the adoption of reasonable restrictions on vessel operations in the Arctic.

182 Id. at 30.
183 Id. at 30.
184 DNV Heavy Fuel Report, supra note 37, at 1; see also AMSA for year-round data in 2004.
185 Eighty-seven per cent of companies reported to CARB that none of their vessels visiting California would require modifications. Additionally, CARB noted that "overall survey data significant overestimates the need for ship modifications." CARB, Staff Report on Oceangoing Vessel Fuel Quality Rule, VIII-5, available at http://www.arb.ca.gov/regact/2008/fuelogy08/ISORfuelogy08.pdf.
186 Two icebreakers, the Fennica and Nordica, are scheduled to be modified in December 2011 to accommodate ultra-low-sulfur fuel. N. Jameson, Conversion will bring the icebreaker into line with EPA requirements, SUSTAINABLESHIPPING.COM, London News Desk, 24 Oct. 2011.
187 AMSA, supra note 22, at 86; see also Table 1.
188 Id. at 144.
190 Id. at 19.
Marine incidents involving polar cruise ships

<table>
<thead>
<tr>
<th>Marine incidents</th>
<th>Total events</th>
<th>Events 2000</th>
<th>Percentage since 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar cruise ships sunk, 1979-2007</td>
<td>8</td>
<td>5</td>
<td>63%</td>
</tr>
<tr>
<td>Polar cruise ships running aground, 1972-2007</td>
<td>27</td>
<td>16</td>
<td>59%</td>
</tr>
<tr>
<td>Pollution and environmental violations, 1992-2007</td>
<td>40</td>
<td>18</td>
<td>45%</td>
</tr>
<tr>
<td>Disabling by collisions, fires, propulsion loss, 1979-2007</td>
<td>28</td>
<td>22</td>
<td>79%</td>
</tr>
</tbody>
</table>

Source: Harold Hunt (USCG), *Raising the Ante: Mass rescue operations in the Arctic*, Proceedings Magazine (Fall 2011)

Table 1: Polar cruise ship incidents

B. Environmental harms from an Arctic oil spill

1. The Arctic Ocean and peripheral seas support diverse ecosystems and provide critical habitat for whales, walrus, polar bears, seabirds, fish, plants, and smaller organisms, many of whom are dependent on the region's salient feature: sea ice. Arctic wildlife has evolved to adapt to the cold weather climate. The Arctic ecosystems have relatively simple food webs and few species – though with high abundance – that tend to live for long periods of time and have low reproduction rates. Many of these species are threatened or endangered.

2. Millions of seabirds from over 60 species can be found in the Arctic, such as Steller's and spectacled eiders, Kittlitz's murrelets, terns, auklets, and yellow-billed loons. Arctic waters sustain more than 150 species of fish, including populations of Arctic cod, herring, capelin, sand lance, and several types of cisco and whitefish. These fish, along with crabs, mollusks and krill, comprise the foundation of the Arctic marine food chain.

3. The World Conservation Union (IUCN) and the Natural Resources Defense Council (NRDC) recently identified 13 ecologically rich and vulnerable areas in the Arctic Ocean that warrant special protection as summer sea ice melts and industrial activity expands in the region.

194 DNV Heavy Fuel Study, *supra* note 37, at 143.
196 Id.
197 Id.
In the event of an oil spill, wildlife is exposed to petroleum toxins through fumes (e.g. volatile organic compounds and polycyclic aromatic hydrocarbons), ingestion and direct contact with the spilled substance. Oil on sea birds and marine mammals, such as eiders, polar bears, and seals, compromises their feathers and fur, which can lead to hypothermia and death. Aside from mortality, sub-lethal effects from toxic exposure include loss of fertility and metabolic disorder. An oil spill's negative impact may be heightened for Arctic species, due to their longevity and slow reproductive rates, possibly prolonging population level effects.

Arctic wildlife is particularly susceptible to oil spills for additional reasons. In the region, animals tend to congregate in large numbers within polynyas – open water areas surrounded by ice – to breed, nest, and rear young at certain times and locales each year. Moreover, current Arctic spill response practices seek to concentrate oil into open water areas for in-situ burning or mechanical recovery, thereby imperilling mammals emerging to breathe and adversely affecting the food chain. In addition, the impracticability of cleaning up an oil spill in the Arctic, especially oil trapped under ice, could lead to oil persistence in affected areas, consequently causing uptake of oil in marine and coastal food chains.

C. Impacts on indigenous peoples from an Arctic oil spill

The environmental and social threats posed by a vessel spill in the Arctic are immense, particularly since, in places like the Bering Strait area, "human reliance on marine resources for subsistence remains essential." Presently, there are no established vessel routing measures in the Strait. Further, there is no Vessel Traffic Service or other traffic management system in operation, coverage of vessels' automated identification system (AIS) is not comprehensive, and shore-based VHF FM communication services are non-existent. Also, there are only three US Coast Guard maintained navigational aids in the Strait, and none above Kotzebue Sound. Safe navigation in the region, due to the absence of designated routes and few aids, is complicated by the threat of sea ice. Its presence in the area is typical for most of the year, and dangerous multi-year ice from the Arctic ice pack has been known to flow southward through the Strait and into the Bering Sea.

A spill in the area such as the Bering Strait would negatively impact a broad range of wildlife. Cetaceans and pinnipeds would be adversely affected. Major populations of nesting shorebirds, waterfowl, and other birds that utilize habitat along the coastal Beaufort and Chukchi seas and along the coast of western Alaska would also be imperilled. In addition, a spill could drift ashore to western Alaska areas and impair seasonal herring and salmon fisheries.
3 A harmful spill would be especially detrimental to St. Lawrence Island communities in Gambell and Savoonga, where 95 per cent of subsistence harvests are from marine-based resources. Communities on Shishmaref, Sarichef Island, and Wales, and on the mainland, also depend extensively on marine resources.210 A sizeable spill, of course, would also adversely impact all local populations in the Bering Strait region.

D. Ancillary benefits of switching to distillate – reductions in harmful air emissions

1 The link between particulate emissions and human health has been documented in an extensive body of scientific research drawing on multiple lines of epidemiological and toxicological evidence, including several rigorous, long-term multi-city epidemiological studies, one of which was conducted over nearly two decades in 150 US metropolitan areas. That body of literature has been reviewed and summarized by the US Environmental Protection Agency (EPA) in its 2009 Integrated Scientific Assessment for Particulate Matter.211

2 Public health concerns from diesel emissions have focused in large part on the role of very small airborne particles formed from diesel exhaust and other combustion sources in causing or contributing to a host of respiratory and cardiopulmonary ailments and increasing the risk of premature death. Fine particles are especially dangerous because they can bypass the body's defensive mechanisms and become lodged deep in the human lung. Particulate matter's toxicity has been linked to inflammatory responses caused by the invasion of particles (and adsorbed chemicals) into human tissues and organs. Based on several decades of research, EPA's 2009 assessment systematically documents thousands of studies linking particulate matter exposures to a host of health impacts including aggravation and causation of respiratory disease including decreased lung function, asthma attacks, lung cancer, and retardation of lung growth in children. The EPA assessment also documents fine particle-related cardiovascular disease such heart attacks, stroke and cardiac arrhythmia.212, 213 Fine particles have been linked to significant changes in heart rate variability, ectopic (out of place) heart beats, and increases in blood inflammatory markers within hours of exposure.214 Exposures to particles are associated with elevated risk of premature cardiac death, as documented in the two largest long-term exposure air pollution studies ever conducted.215, 216, 217, 218, 219 Daily exposures to particles are also linked to

210 Id. at 107-08.
214 M. Riediker et al., Exposure to particulate matter, volatile organic compounds and other air pollutants inside patrol cars, 37 Environmental Science and Technology 2084 (2003).
premature death in the 90-city National Morbidity and Mortality Air Pollution Study. New evidence suggests that exposure to particulate matter may elevate risk of cardiac disease specifically in women. Recent studies have also succeeded in identifying plausible biological mechanisms such as systemic inflammation, accelerated atherosclerosis, hypertension, constriction of blood vessels and altered cardiac function to explain the cardiac and other serious health impacts associated with exposure to airborne fine particles. Most recently, elevated fine particulate levels have also been linked to increased rates of adult diabetes.

3 Research also indicates that exposure to particulate matter may result in shorter life-expectancy for people living in the most polluted cities compared to people who live in cleaner cities. Studies suggest that fine particles may reduce the average life span of the general population by a few years, but the life of an individual dying as a result of exposure to air pollution may be shortened by 14 years. Adverse effects, including excess mortality, occur even at low ambient concentrations of fine particles, suggesting no "safe" threshold for exposure to particulate matter. Indeed, a 10 September 2010 letter from the Clean Air Scientific Advisory Committee states: "Although there is increasing uncertainty at lower levels, there is no evidence of a threshold (i.e. a level below which there is no risk for adverse health effects)."

230 J. Schwartz et al., The effect of dose and timing of dose on the association between airborne particles and survival, 116 Environ Health Perspect, 64 (2008).
232 S. Vedal et al., Air Pollution and Daily Mortality in a City with Low Levels of Pollution, 111 Environ Health Perspectives 45 (2003).
233 M. Brauer et al., Exposure misclassification and threshold concentrations in time series analysis of air pollution health effects, 22 Risk Anal. 1183 (2002).
4 Black carbon is the coloured carbonaceous element of particulate emissions and is produced by the incomplete combustion of fossil fuels, biofuels, and biomass. Black carbon emissions, as a component of PM, also adversely affect human health in the manner described above. In addition, black carbon emissions impact climate, especially in the Arctic, as has been described in a number of IMO submissions. In fact, black carbon emissions account for nearly 50 per cent of Arctic warming, and incomplete fossil fuel combustion constitutes a significant source of black carbon in the region. While marine shipping in the Arctic is presently a relatively minor source of black carbon emissions, its impact may be great because of proximity to Arctic sea ice and snow. At a 2007 United States Congressional hearing, one scientific expert remarked that "[r]educing intra-Arctic [black carbon] emissions from generators and marine vessels will become increasingly important as industry and transport seek new opportunities in the thawing Arctic." In addition, black carbon emissions in the Arctic are likely to grow as Arctic ice melts and sea lanes open up to increased shipping activity. A recent high-growth scenario of Arctic shipping, including both destination and diverted trans-Arctic traffic, projects black carbon emissions to exceed 2004 levels by nearly five-fold in 2030 and over 18-fold by 2050. That same high-growth scenario suggests that black carbon from Arctic shipping in 2030 may increase global warming potential of the vessels' emissions by some 17 to 78 per cent.

5 Another recent study indicates that vessel use of distillate fuel rather than bunker fuel reduces air emissions of particulate matter, including black carbon. The study analysed the emissions of a container vessel as it switched from high-sulfur HFO to low-sulfur distillate fuel and slowed its speed off the California coast. Over 90 per cent reductions of particulate matter, and 75 per cent reductions in black carbon, were achieved on a per

235 V. Ramanathan and G. Carmichael, Global and Regional Changes Due to Black Carbon, 1 Nature Geoscience, 221, 221 (2008).
237 See, e.g. MEPC 62/4/16 and related documents identified therein.
238 D. Shindell and G. Faluvegi, Climate Response to Regional Radiative Forcing During the Twentieth Century, 2 Nature Geoscience 294 (2009).
240 In 2004, shipping released 1,180 tons of black carbon in the Arctic. AMSA, supra note 22, at 141.
243 Arctic Emissions Inventory, supra note 36.
244 Id.
245 D. Lack et al., Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality, 45 Environ. Sci. Technol. 9502 (2011), in United States, Impact of fuel quality regulation and speed reductions on shipping emissions: Implications for climate and air quality (Nov. 11, 2011) (submitted to IMO's Bulk Liquids and Gases Sub-Committee and reviewed as BLG 16/INF.5) and accompanying synopsis: United States, Impact on the Arctic of Emissions of Black Carbon from International Shipping (Nov. 25, 2011) (submitted to IMO's Bulk Liquids and Gases Sub-Committee and reviewed as BLG 16/15/2).
kilometre basis in the demonstration. Particulate matter (PM) is made up of a number of constituents, including sulfates, particulate organic matter and black carbon. All PM constituents were reduced by at least 75 per cent on a per kilometre basis. Observed reductions in sulfate and particulate organic matter were found to be related to the fuel composition. Similarly, the authors posit that “use of higher quality fuels by ships in the Arctic may result in less BC [black carbon] deposition to snow and ice (compared to the use of low- quality fuels) resulting in positive climate benefits.”

In view of the above, a switch from bunker fuel to distillate in the Arctic would substantially reduce total emissions of fine particulate matter (PM$_{2.5}$) in a region of four million people. A recent study from Sweden found that a shift to distillate use in its national shipping industry would reduce PM$_{2.5}$ levels by 150 metric tons in 2020. These reductions were achieved, as well, in a relatively inexpensive manner: 44.5 Euros/kg PM$_{2.5}$.

Moreover, switching to distillate fuel would save many lives and reduce monetized health costs considerably. A recent study by Dr. James Corbett and others estimates that premature mortality in the Arctic front area (above 40 degrees north latitude) from co-emitted black carbon and particulate organic matter from ships is 6,200 persons per year. Monetized costs related to these premature mortalities amount to roughly $39 billion each year. The costs associated with using a cleaner distillate fuel instead of HFO would likely be substantially exceeded by monetized benefits to human health, making the proposal cost-effective from a public policy perspective.

E. Economic benefits of switching to distillate use in the Arctic

Heavy fuel oil (HFO) spills, due to their persistence and capacity to spread out over large areas, are costly in terms of cleanup and socioeconomic and environmental damages. Relatively small spills of HFO have resulted in tremendous costs. For example, the Nakhodka spilled some 17,500 metric tons of HFO off Japan's coast which resulted in a total cost of over $200 million, while the Erika spilled about 20,000 metric tons of HFO in French waters, resulting in overall costs in excess of $300 million. An HFO spill in the Arctic, even one of relatively small size, would likely cost many millions of dollars.
F. Reasons for shipping industry support of a strong Polar Code

1 Harmonizes rules

1.1 Currently a number of varied national rules apply to Arctic shipping within the region's exclusive economic zones. One intention of the Polar Code is to harmonize and strengthen the regulatory framework for shipping on a pan-Arctic basis. However, if the Code is found lacking, Arctic countries are apparently prepared to pursue other courses of action. For example, the Kingdom of Denmark has remarked:

"Should it prove that agreement on global rules cannot be reached, and in view of the especially vulnerable Arctic environment and the unique challenges of security, the Kingdom will consider implementing non-discriminatory regional safety and environmental rules for navigation in the Arctic in consultation with the other Arctic states and taking into account international law, including the Convention on the Law of the Sea provisions regarding navigation in ice covered waters."

2.2 Enacting a strong Code with the global imprimatur of the IMO, however, would avoid the need to pursue an Arctic regional agreement with other coastal States. Moreover, adopting environmental provisions for the Arctic that are comparable to rules already in place in the Southern Ocean provide not only enhanced environmental protection but also create a more equitable playing field.

2 Provides certainty for investment decisions

Without rules that govern Arctic shipping, investment decisions such as vessel and infrastructure purchases relevant for the region are difficult to make. However, clear guidance can enable responsible commercial activities to follow accordingly.

3 Protects the environment and fosters sustainable development in the region

3.1 A strong Code will enhance crew and passenger safety as well as better safeguard the vulnerable Arctic environment. Since a bunker or cargo spill represents an acute threat to the marine environment and indigenous activities, mitigation of this risk is imperative. As detailed in this report, sufficient ice-strengthening requirements for vessel operations in the Arctic are essential, but reducing environmental risk by other means should be pursued. Primarily, HFO should not be used within the Arctic bounds of the Polar Code. A ban on HFO use would provide important environmental risk mitigation. First order protections, i.e. ice-strengthened hulls and double skinned bunker tanks, cannot prevent all spills from occurring. Groundings or allisions with ice, especially glacial ice and old sea ice, can and do rupture bunker tanks and cause spills into marine environments, even with strong

255 Kingdom Strategy, supra note 27, at 18.

256 See AMSA, supra note 22, at 5, 7.

257 Moreover, HFO carriage restrictions should be considered for certain Arctic waters exhibiting special ecological and cultural characteristics.
preventative measures in place. The Explorer sinking in the Southern Ocean is a good example of an ice-strengthened vessel whose tanks were compromised when it struck ice, yet the level of environmental harm was substantially mitigated because the vessel operated on marine distillate as opposed to HFO.

3.2 In addition to the inherent marine environmental benefits related to an HFO use ban, air quality benefits accrued from mandating the use of low-sulfur marine fuel would be substantial. Further, from a health-based cost-benefit standpoint, eliminating HFO use will result in substantial monetized benefits. Finally, a strong Polar Code enacted by IMO would send a clear and unambiguous signal to interested parties and intergovernmental fora that commercial activities in the Arctic should proceed in an environmentally sustainable manner.

4 Obviates the imposition of an extremely burdensome regulatory regime

A major vessel cargo or bunker spill in the Arctic could alter the growth of shipping in the region. If a spill occurred either before the Polar Code entered into force or after implementation of weak amendments, it is possible that, depending on the spill's severity, a revision of the Code would be undertaken. In that case, it is quite likely that political pressure would cause member nations to advocate for bans on shipping in areas of the Arctic and/or re-craft the Code with extremely onerous environmental and safety standards, effectively making certain types of shipping in the region economically infeasible. As evidence of this potential scenario, one need only look to responses following oil spill disasters involving the Exxon Valdez, Prestige, and Erika, where domestic and/or IMO action was swift and forceful. Moreover, insurance costs associated with Arctic shipping, in light of a major spill, could increase substantially as well, possibly affecting the economic calculus that governs vessel operations.

G. Added reason for Arctic coastal State support of a strong Polar Code: enacting a weak Polar Code could inhibit actions taken by Arctic coastal States under article 234 of UNCLOS

An international law expert has asserted that a binding Polar Code would limit the regulatory authority of coastal States to adopt navigational safety and environment rules in ice-covered under article 234 of the United Nations Convention on the Law of the Sea (UNCLOS). He bases this assessment on the general inclination of UNCLOS – outside of State internal

259 Id.

260 See e.g. IMO submissions BLG 11/INF.3, BLG 12/6/9, BLG 15/INF.5, MEPC 52/4/4, MEPC 53/4/1, MEPC 57/4/15, MEPC 62/4/3, and MEPC 62/INF.32 (estimating that international shipping emissions of particulate organic matter and black carbon will be responsible for approximately 6,200 premature deaths in 2012 in the northern hemisphere above 40° North latitude).

261 For instance, the California Air Resources Board has calculated that its ocean-going vessel fuel rule would result in monetized health benefits, related only to directly emitted particulate matter, of nearly 10 to 1. CARB, Appendix G, Calculation of Total Present Value Cost of the Regulation, available at http://www.arb.ca.gov/regact/2008/fuelogv08/appgfuel.pdf.

waters – to limit coastal State jurisdiction so that navigation consonant with generally accepted international standards or rules can occur without impairment; the principle of freedom of navigation espoused in article 234; and a reading of that article "in light of the subsequent development of and reliance on standards adopted by the IMO."264 The expert maintains that adoption of a weak Polar Code would handcuff countries such as Norway from exercising article 234 authority that was more stringent than the Code.265

X Conclusion

In light of the information and reasons presented above, an environmentally strong Polar Code is in the best interests of all. Of particular importance, the Code should contain stringent ice-strengthening requirements for vessels plying polar waters and prohibit the use of HFO by vessels transiting Arctic waters. With these key provisions in place, Arctic shipping would be headed in the right direction from an environmental and safety standpoint. As discussions surrounding the specifics of Polar Code provisions enter a more mature phase in 2012, particularly with respect to environmental provisions, we ask that all stakeholders consider this report in Code deliberations.

264 Id.
265 Id.